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In  a three-dimensional simulation higher-order derivative correlations, including 
skewness and flatness (or kurtosis) factors, are calculated for velocity and passive 
scalar fields and are compared with structures in the flow. Up to 12P grid points are 
used with periodic boundary conditions in all three directions to achieve BA to 82.9. 
The equations are forced to maintain steady-state turbulence and collect statistics. 
The scalar-derivative flatness is found to increase much faster with Reynolds number 
than the velocity-derivative flatness, and the velocity- and mixed-derivative skew- 
nesses do not increase with Reynolds number. Separate exponents are found for the 
various fourth-order velocity-derivative correlations, with the vorticity-flatness 
exponent the largest. This does not support a major assumption of the lognormal and 
/3 models, but is consistent with some aspects of structural models of the small scales. 
Three-dimensional graphics show strong alignment between the vorticity, rate- 
of-strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the 
scalar gradient and the largest principal rate of strain aligned perpendicular to the 
tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a 
short -f spectral regime is observed. 

1. Introduction 
The classical approach to investigating small-scale intermittency in turbulence is 

through the higher-order derivative correlations such as skewness and flatness 
factors. Experimentally this has been done for both velocity and temperature, which 
is a passive scalar when buoyancy is negligible. The long-range goal is to improve 
our understanding of the structure of the small scales, possibly leading to improved 
methods for subgrid modelling. An intermediate objective has been to relate the 
derivative correlations to dissipation correlations and corrections to Kolmogorov 
scaling. It is believed that this is possible because the small scales are universal; that 
is, the small scales have a structure that is independent of the large scales and can 
be modelled. Hot-wire measurements of higher-order velocity and scalar statistics 
with one velocity component, such as the velocity-derivative flatness and skewness, 
support this conclusion. More complicated statistics have not been measured and 
alternative approaches, such as flow visualization, are limited because they do not 
have the flexibility necessary to distinguish small-scale structures that are intermittent 
in space and time. 

Another approach to investigating the small scales is numerical simulations, which 
can provide more detail than experiments. For example, because all components of 
the velocity are known in a simulation, one is able to study correlations beyond the 
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derivative skewness and flatness and computer graphics can display structures not 
accessible to experiments. The main disadvantage of a simulation is that only a 
limited range of lengthscales is allowed, which restricts the Reynolds number to very 
low values. But in low-Reynolds-number experiments the values of most of the 
derivative correlations are significantly different from their uncorrelated or Gaussian 
values. Therefore, these statistics are accessible to current numerical methods and 
computers. Siggia (1981 a) used a numerical simulation to calculate higher-order 
correlations of the velocity, and discussed the relation between small-scale vortex 
structures and intermittency. Our approach will be to use a similar simulation to look 
in more detail at the velocity-derivative statistics and the statistics of a passive 
scalar. Graphical display of small-scale vorticity, rate-of-strain, and scalar-gradient 
structures is used to interpret these statistics and comparisons with phenomenological 
theories and experiments are made. 

There are two phenomenological approaches to predicting the small-scale statistics : 
either by assuming a form for vortical structures or a form for the energy casmde 
from large to small scales. Two models that are based on the cascade of energy are 
the lognormal theory of Kolmogorov (1962) and the /3-model of Frisch, Sulem k 
Nelkin (1979). Both theories predict a correction to the k-f inertial-range kinetic- 
energy spectrum of Kolmogorov (1941). They also predict that as the Reynolds 
number grows the velocity fluctuations become increasingly localized, or intermittent, 
distributions become highly non-Gaussian, and the higher-order correlations, such as 
the derivative skewness and flatness factors, increase with Reynolds number with a 
power-law dependence. The power-law exponents depend on the details of each model 
and on p, the characteristic exponent of the dissipation-dissipation correlation 
function in the inertial subrange 7 < r < L: 

(c (x)E(x+r))  = Ae2 - (7 
(Monin & Yaglom 1975, p. 618), where A is a constant and L is defined by (12). All 
correlations of a given order are predicted to have the same power-law dependence. 
The lognormal model predicts that 

and that (3) 

where a, = qpn(n- 1 )  (4) 

(Frenkiel & Klebanoff 1975). The /?-model is similar, but predicts that 

u, = - 3P (E- 1) 
4-p  2 (5) 

(Nelkin & Bell 1978). The success of these models in predicting the experimentally 
observed dependence of derivative skewness and flatness on Reynolds number is 
discussed in detail by Antonia, Satyaprakash & Hussain (1982), who conclude that 
the lognormal model is superior in this respect. Neither of the corrections to the k 2  
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law proposed has been observed, although the lognormal correction is much smaller 
and probably not much above statistical noise. 

The value of p can be found either from the spectra of squared velocity derivatives 
or by using these models to calculate back from a,. Nelkin (1981) and Antonia et al. 
(1982) summarize the current experimental values for p, but, because calculating p 
depends on the model used and experiments conflict, we calculate only the a,. 

Structural models assume that the small scales are composed of tubes or sheets of 
vorticity. Corrsin (1962) assumed that sheets dominated and concluded that up = 1.5. 
Saffman (1968) also assumed that the vorticity would be found in sheets whose 
thickness would be the order of the Taylor microscale (9), but that, within the sheets, 
dissipation would be localized in regions characterized by the Kolmogorov lengthscale 
(10a). He found that a4 = 1 and a3 = 0, that is, the skewness is constant. A variation, 
proposed by Tennekes (1968), assumes that the dominant structures are tubes whose 
thickness is the Kolmogorov lengthscale, but which are subject only to the large-scale 
strain. His results agree with those of Saffman. Experimentally, a3 is observed to be 
very small, possibly zero, but a4 is much less than the predicted value of 1.  

Dissipation of the variance of a passive scalar is observed to be intermittent, much 
like kinetic-energy dissipation. For example, the scalar-derivative flatness scales with 
Reynolds number in a manner similar to the velocity-derivative flatness, but with 
a larger exponent (Antonia t Chambers 1980). Sudden jumps in experimental 
temperature signals, known as 'ramps', are also observed (Antonia et al. 1979). The 
only theoretical attempt to describe scalar intermittency was by Van Atta ( 1974), 
who used lognormal assumptions. Correlations between the velocity and scalar 
derivatives would also be interesting, but because i t  is difficult to measure two 
turbulent fields simultaneously, there have been almost no experimental measure- 
ments of these correlations. 

In  this paper, a variety of velocity- and scalar-derivative correlations are calculated 
over a range of Reynolds numbers. In  an isotropic uncorrelated field with Gaussian 
statistics each of the correlations to be discussed has an easily determined value. For 
the velocity-derivative correlations Faun (3), the skewness ( n  = 3) is zero, the flatness 
(n = 4) is 3, and the sixth-order correlation is 15. For mixed correlations in which 
both the velocity derivative and the scalar derivative have a power of 2, such as the 
mixed-derivative correlation (40), the uncorrelated value is 1.  A t  high Reynolds 
numbers the statistics are usually highly non-Gaussian, both in experiments and in 
our simulations. We will concentrate on third- and fourth-order correlations, with 
some fifth- and sixth-order correlations presented to allow comparisons with the 
phenomenological models. Since the models discussed predict scaling laws and 
exponents, we will estimate these exponents and make comparisons. 

The governing equations are the incompressible Navier-Stokes equation for the 
velocity and the transport equation for a passive scalar. The Navier-Stokes equation 
is 

V-u = 0 (incompressibility). 

The nonlinear term, u-VU, can be written in several different forms which are 
computationally convenient : the conservative form, 

v *  (W, 
and the rotational form, oxu+v*2. 
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The scalar equation can also be written two ways in incompressible flow: the 
convective form ae --+ II' V8 = D V V ,  

at ( 7 4  

ae 
at 

and the conservative form 
--+V.U~ = DVW. 

In the absence of viscosity v and diffusivity D the equations conserve two positive- 
definite quadratic invariants : the kinetic energy of turbulent fluctuations 

E = t<uz %>, 

and the scalar variance E, = (13~). 

The fundamental dimensionless parameters that determine our statistics are the 
Taylor-microscale Reynolds number R, = UA/v and the Prandtl number v / D ,  where 
U is the characteristic velocity of the turbulence, 

;IT = E ,  (8) 

<u:Y 

<(aulla%)2>r * 

and A is the Taylor microscale, 
A =  (9) 

Also of interest are the kinetic-energy dissipation rate, 

and the scalar-variance dissipation rate, 

d 
dt 

x = -- (82). 

The Kolmogorov lengthscale, wavenumber cutoff, and velocity scale are defined as 

and the Oboukov-Corrsin microscale and wavenumber (Corrsin 1951) are defined as 

1 
and KO, = -. 

Toc 

D3 
Toc = (Ty 

2. Numerical method 
Two numerical codes were used for the simulations presented. Each is a three- 

dimensional spectral code with periodic boundary conditions. By spectral we mean 
that the fundamental variables that are stored and advanced in time are the 
Fourier-transformed velocity and scalar fields u(k) and 8(k ) .  For simple geometries 
these methods allow more resolution than fmite-difference methods for the same 
number of grid points (Orszag 1971). To improve the speed of spectral methods fast 
Fourier transforms are used to return to physical space, where the nonlinear terms 
are calculated by forming products. This method is sometimes referred to as 
pseudospectral because it introduces aliasing errors in the high wavenumbers. One 
way to reduce these errors, or dealias, is by truncating interactions outside a 
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boundary in Fourier space. This does not significantly affect the resolution because 
only the high-wavenumber tail of the spectrum, with only a small fraction of the total 
energy, is truncated. To completely dealias one should truncate all wavenumbers 
larger than $N, where N is the number of grid points in a single direction. To 
completely dealias a three-dimensional code without truncation requires calculating 
the nonlinear terms on eight shifted grids. Fortunately, Patterson & Orszag (1971) 
have shown that in two or more dimensions all the aliasing errors can be eliminated 
by using only two shifted grids and a spherical truncation with the proper radius. 
This method was used in their original code, known as Superbox. Another approach 
uses shifted grids on alternate evaluations (Rogallo 1981). The extent to which 
aliasing errors affect a calculation also depends on the algorithm used for the 
convective terms. Superbox uses the aliased rotation algorithm (6c) because it 
conserves kinetic energy, which helps inhibit instabilities and reduces the need for 
using shifted grids. To determine whether a dealiasing scheme is actually reducing 
errors can only be determined by numerical tests. For sufficiently strong dissipation 
aliasing errors are very small and it is difficult to determine if a scheme is better. For 
example, comparisons between versions of Superbox with and without shifted 
grids show no significant differences in their spectra when dissipation is strong 
(G. S. Patterson, National Center for Atmospheric Research, private communication 
1980). 

The scalar equations do not allow aliasing to be neglected as easily as the 
Navier-Stokes equations do. For zero diffusivity, the scalar variance is conserved by 
the exact equations. But the aliased versions of both the convective and conservative 
equations (7u, b) do not conserve scalar variance. Instead, their respective aliasing 
errors are equal in magnitude and opposite in sign. We investigated taking advantage 
of this by averaging the two forms of the scalar equation to dealias, but it did not 
yield any significant improvements because our fields were already well resolved. 

The code used for the 323 runs is based on the Superbox code of Siggia & Patterson 
(1978) and Siggia ( 1 9 8 1 ~ ) .  The rotational form of the NavierStokes equation (6c) 
was used for the velocity and the time advancement WM leapfrog with stabilization 
done every 40 time-steps by a second-order Runge-Kutta step. Shifted grids were 
not used for dealiasing, but the convective and conservative forms of the scalar 
equation (7u,b) were used on alternate time-steps to partially dealias the scalar. 
Wavenumbers were truncated outside a sphere of radius i N .  This truncation has the 
advantage of being isotropic, but does allow significant one-dimensional aliasing 
errors. Details of this code may be found in Kerr (1981). Simulation of the velocity 
and one scalar required approximately 0.75 s of computer time (c.P.u.) per evaluation 
on a Cray-1S computer and the longest simulation used 40 min of computer time. 

The code for the M3 and 12@ calculations also used the rotational form of the 
NavierStokes equations, with a spherical truncation of ?jN and without shifted grids, 
but only the conservative form of the scalar equation was used. The time advancement 
was third-order Runge-Kutta (A. Wray, NASA Ames Research Center, private 
communication, 1981) and up to three scalars could be calculated simultaneously. 
For a M3 mesh with three scalars, 6 . 5 s  of Cray C.P.U. were required for each 
evaluation, with three evaluations per time-step. The code with no scalars required 
3.25 s of c.p.u. per evaluation. Our longest simulation for a M3 mesh with three scalars 
(F19-21) required 12 h of computer time to  simulate seven eddy-turnover times (1 1 ) .  
For a 12P  mesh with three scalars approximately 55 s of C.P.U. were required per 
evaluation and three eddy-turnover times required 70 h of Cray time. 
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3. Forcing, simulation parameters, and aliasing limits 
The codes outlined have been used for forced and decaying simulations. This paper 

will concentrate on the higher-order correlations obtained when the large scales are 
forced. The decaying calculations are discussed in detail by Herring & Kerr (1982) 
and Kerr (1981), though some of those results are included here in figure 3. 

Why do we force the large scales? Ideally we would like to  simulate an infinite 
domain with unlimited resolution of the smallest scales, but in practice we are limited 
to a finite box with a finite mesh. There is a minimum wavenumber associated with 
the size of the box and a maximum wavenumber associated with the mesh spacing. 
If the effects of these limits are to be minimized, the energy must be restricted to 
a very small range of wavenumbers and the Reynolds number must be small. The 
calculations discussed in Herring & Kerr (1982) simulate decaying flow behind a grid 
and are restricted in this way. 

By forcing the large scales, some of the restrictions imposed by the low-wavenumber 
limit can be removed. It is believed that  for sufficiently large Reynolds numbers there 
is a cascade of energy from large to small scales which maintains a statistically steady 
state. By forcing we hope to  mimic a cascade from wavenumbers smaller than the 
minimum wavenumber to those in our computational box. Forcing would also 
maintain a steady spectrum at moderate Reynolds numbers and allow us to collect 
statistics of the higher-order correlations. Since the derivative correlations are 
representative of the small scales or high wavenumbers, it is hoped that they will not 
be affected by the details of the large scales, in our case the details of the artificial 
forcing used. Our approach is opposite to  that of many turbulence modellers, who 
are primarily interested in the large scales and model the small scales. 

Both the velocity and scalar were forced by time-advancing the lowest-wavenumber 
band (1  < k/k, < 2, where k, is the lowest wavenumber of the code) independently 
of the high wavenumbers. The modes calculated in this manner were included in the 
full equations and the higher modes were advanced as usual. Details of the numerics 
may be found in Kerr (1981). Low-order systems, such as our forced-wavenumber 
band, are known to behave chaotically, often with an associated strange attractor. 
To determine whether a system is chaotic or has a complicated periodic motion 
requires integration over many characteristic timescales and the determination of the 
Lyapunov exponent. Since our calculations cover only a few characteristic times a 
detailed analysis is not possible, but analysis of single modes in our forced wavenumber 
band does suggest chaotic behaviour. Our forcing is different to that used by Siggia 
(1981 a), whose forcing modes were outside his computational box. Numerical tests 
suggest that  the exact nature of the forcing is irrelevant, so long as the energy in 
the first wavenumber band is constant. 

We present results from 27 forced cases for the Taylor-microscale Reynolds number 
R, between 9 and 82.9 and the Prandtl number between 0.1 and 2.0 (see table l),  
but will discuss only a few in detail. All but one of the simulations includes a passive 
scalar. The exception (labelled F12 in table 1 )  uses the original dealiased Superbox 
code and our forcing to discern the effect of aliasing. 

Each simulation was run until a statistically steady state was reached, usually a t  
about two eddy-turnover times. An eddy-turnover time is defined as 

L 
t =-  

U ’  

where 
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_____ 

Run 

Fl 
F2 
F3 
F4 
F5 
F6 
F7a 
F7b 
F8 
F9 
F10 
F11 
F12 
F13 
F14 
F15 
F16 
F17 
F18 
F19 
F20 
F21 
F22 
F23 
F24 
F25 
F26 
F27 

Mesh 

328 
328 
328 
328 
328 
328 
328 
328 
32' 
32a 
328 
32a 
328 
648 
6 4 8  

648 
648 
648 
6 4 8  

648 
643 
643 

64* 
648 

1283 
1288 
1288 

RA 
9.0 
9.0 

12.3 
12.3 
12.3 
18.5 
18.5 
18.5 
18.5 
24.0 
24.0 
28.9 
28.9 
28.5 
28.5 
28.5 
37.5 
37.5 
37.5 
48.2 
48.2 
48.2 
55.9 
55.9 
55.9 
82.9 
82.9 
82.9 

Pr 

2.0 
0.5 
2.0 
1 .o 
0.5 
1 .o 
0.5 
0.5 
0.1 
0.5 
0.1 
0.5 

1 .o 
0.5 
0.1 
1 .o 
0.5 
0.1 
1 .o 
0.5 
0.1 
1 .o 
0.5 
0.1 
1 .o 
0.5 
0.1 

- 

At 

19.0 
19.0 
13.6 
13.6 
13.6 
9.6 

39.0 
9.0 
9.6 
9.5 
9.5 

29.5 
29.5 
10.0 
10.0 
10.0 
4.5 
4.5 
4.5 
6.75 
6.75 
6.75 
4.00 
4.00 
4.00 
1.35 
1.35 
1.35 

N ,  
20 
20 
35 
35 
35 
25 
40 
10 
25 
20 
20 
60 
60 
11 
11 
11 
10 
10 
10 
28 
28 
28 
17 
17 
17 
27 
27 
27 

Kk 

9.4 
9.4 

11.9 
11.9 
11.9 
16.5 
16.4 
16.5 
16.5 
21.4 
21.4 
25.7 
25.8 
12.3 
12.3 
12.3 
16.0 
16.0 
16.0 
22.4 
22.4 
22.4 
27.2 
27.2 
27.2 
45.7 
45.7 
45.7 

K O ,  

15.8 
5.6 

20.0 
11.9 
7.8 

16.5 
9.8 
9.8 
2.9 

12.7 
3.8 

15.3 

12.3 
7.3 
2.2 

16.0 
9.5 
2.8 

22.4 
13.3 
4.0 

27.2 
16.2 
4.8 

45.7 
27.2 
8.1 

- 

te 

4.7 
4.7 
3.55 
3.55 
3.55 
1.97 
1.98 
1.97 
1.97 
1.26 
1.26 
0.91 
0.91 
3.83 
3.83 
3.83 
2.51 
2.51 
2.51 
1.41 
1.41 
1.41 
1.05 
1.05 
1.05 
0.85 
0.85 
0.85 

TABLE 1. Characteristics of forced simulations. At: Timespan of statistical 
sample. N,: Number of files averaged. 

is the integral lengthscale. After reaching a steady state, statistics were collected for 
at least one and a half more eddy-turnover times and the means and variances of 
a variety of velocity and scalar correlations were obtained by averaging. These 
statistics and the errors are discussed in detail in Kerr (1981) and Kerr (1983). Where 
possible, isotropic forms of the statistics were calculated to increase the sample size 
and in all cases the errors for the third- and fourth-order correlations were less than 
10%. 

Most earlier 323 spectral simulations (Orszag & Patterson 1972) have been limited 
to RA less than 30, bamd on considerations of the location of the peak of the 
three-dimensional velocity-dissipation spectrum (which is near the ' bulge ' discussed 
in the following section for figure 1). Further restrictions come from considerations 
of trends in the derivative flatnesses. Generally, the derivative skewnesses (14, 15) 
and flatnesses (32,39)  increase, or remain constant, with increasing Reynolds number. 
Failure to do so indicates that small-scale truncation and aliasing errors are 
significant. This behaviour was observed for a 323 mesh at Reynolds numbers larger 
than 24. In  order to demonstrate the magnitude of aliasing errors at this Reynolds 
number, table 2(a )  gives derivative flatness factors for 323 and 643 calculations 
starting with identical initial conditions at R, E 29. On the M3 grid there are 
virtually no aliasing or truncation errors at this Reynolds number for any of the 
Prandtl numbers used. Any differences between the 323 and M3 results are due to 
aliasing and high-wavenumber truncation errors in the 323 simulation. In run F11 
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Run Grid size Pr Fa,. (64) Fa94 (64) Fau, (32) Fa94 (32) 

(a) Averages of many realizations 
F l l  32 0.5 - - 3.94 5.73 
F12 32 
F13 64 1 .o 4.18 6.88 
F14 64 0.5 4.18 5.82 
F15 64 0.1 4.18 3.61 

- - 4.17 - - 
- - 
- - 
- - 

(b)  One realization 

F13 64 1 .o 3.99 7.30 3.93 5.62 
F14 64 0.5 3.99 5.95 3.93 5.08 
F15 64 0.1 3.99 3.55 3.93 3.57 

TABLE 2. Velocity and scalar flatness factors used to determine aliasing errors. F11 is 32 cubed 
aliased. F12 is 32 cubed dealiased. The size of the grid used to calculate the fletnesses is in 
parentheses. 

only spherical truncation is used to dealias; while F12 uses the original Superbox code 
to dealias by shifting grids on each evaluation. For F11 (aliased) both the velocity- 
derivative flatness and scalar-derivative flatness for Pr = 0.5 are significantly lower 
than the 643 results (F14), while in F12 (dealiased) there is virtually no difference 
with F14. Therefore, at this Reynolds number an aliased 323 calculation does not 
resolve the small scales, whereas a dealiased calculation does. 

To estimate the maximum allowable Reynolds numbers on the 643 and 1283 
grids, the Kolmogorov wavenumber cutoffs of the simulations can be compared 
with the maximum warenumbers allowed by the grids. For the inertial range 
( E ( k )  - KO&$) R, - K i .  But the Reynolds numbers in the 323 and 643 simulations 
are too low for an inertial range to appear and R, - Kk25 fits our results better. If 
the maximum allowable Kolmogorov wavenumber on a 643 grid is assumed to be twice 
that permitted on a 323 grid, then to ensure that the small scales in the 643 simulation 
are fully resolved, the maximum R, is 55.9( x 24 x F a z 5 ) .  4s shown in figure 1, our 
12fj3 simulation has a noticeable -% inertial range, so the K i  law should be used and 
R, = 82.9( x 52 x 2O.O'). 

In  addition to its effect on the calculation of the velocity and scalar fields, aliasing 
can introduce errors in the calculation of the derivative-flatness factors. To estimate 
this error the derivative flatnesses for a 643 simulation were calculated on a 323 grid 
for one realization. Table 2 (b) shows that the velocity-derivative flatness calculated 
on a 323 grid yields a slightly smaller result. This reinforces our conclusion that 
R, - 29 is slightly too high for a 323 grid. The scalar-derivative flatness for Pr = 0.5 
shows aliasing errors similar to those in the velocity field, so no further restrictions 
on the Reynolds number are necessary when Pr < 0.5. On the other hand, a 
significant decrease is seen in the scalar-derivative flatness for Pr = 1.0 when it is 
calculated on a 323 grid. 

Naively one would expect that for Prandtl number of 1, where the viscosity and 
scalar diffusivity are the same, there would be similar truncation effects for the 
velocity and the scalar. Instead, the scalar errors are much larger. What does theory 
tell us ? For Prandtl number greater than 1, Batchelor (1959) predicts a new spectral 
regime in which scalar variance diminishes as k-' for wavenumbers greater than the 
Kolmogorov wavenumber. The cutoff for the new spectral regime is k ,  = (e/vD2)i. 
This spectral regime has been observed (see Monin & Yaglom 1975, p. 513). Since 
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a higher Prandtl number implies a higher spectral cutoff, for large Prandtl numbers 
truncation effects will appear even at very low Reynolds numbers. Consequently for 
Pr = 2, RA > 12 was not run on a 32a mesh. But an anomalous k-’ subrange is also 
observed experimentally for Prandtl number as low as 0.7, the atmospheric value (the 
‘bump’, Hill 1978). Therefore, even at Pr = 1 truncation, as indicated by the 
scalar-derivative flatness, becomes important for RA > 18 on a 323 grid. 

Because of these difficulties our simulations are restricted to low Prandtl numbers. 
Some of the simulations for Pr = 1 are included in the plots of the correlations, but 
only for lower Reynolds numbers. Prandtl numbers of current experimental interest 
that we can simulate are 0.7, the atmospheric value, and moderately low Prandtl 
numbers, such as found in liquid metals. Extremely low values cannot be simulated 
satisfactorily because the relevant low-wavenumber cutoff is the Oboukov-Corrsin 
cutoff, KO, ( lob) ,  and this would be below the minimum wavenumber of the 
simulation. The lowest value we use is Pr = 0.1. Analysis of spectra in $4 support 
these conclusions. 

4. Spectra and skewnesses 
Since most simulators determine whether there is significant truncation error by 

inspecting high-wavenumber spectra, we have included some spectra to demonstrate 
the validity of our method. Figure 1 shows three-dimensional energy spectra, 
normalized by the Kolmogorov microscales and multiplied by d, for several Reynolds 
numbers. The turnup at large wavenumbers is a numerical effect of the large- 
wavenumber cutoff. Where the turnup is small, the small scales are well resolved. The 
turnup for RA = 55.9 in a Ma simulation and RA = 82.9 in the 12P simulation is the 
most we could accept. The three-dimensional kinetic-energy and scalar-variance 
spectra for our largest Reynolds number, 82.9, are plotted in figure 2. The velocity 
spectrum is normalized aa in figure 1 and the scalar spectra are normalized by the 
Kolmogorov microscales and the scalar-variance dissipation in a similar manner. 
When compared with the scalar variance at low wavenumbers, the turnup at high 
wavenumbers for Pr = 1 is unacceptably large. This reinforces our conclusion that 
moderate to high Prandtl numbers can be simulated only with low-Reynolds-number 
simulations. 

With the exception of deviations in the lowest Reynolds-number spectrum 
(RA = 18.5), all of the spectra in figure 1 collapse to a single curve in the dissipation 
range. In addition, a short -! regime appears in the 12P spectrum (RA = 82.9) at 
low wavenumbers. For comparison, the dashed line in figure 1 fits a spectrum of the 
form predicted by Pa0 (1965), 

E( k) = KO d k 3  exp ( - 1 .5K0 u d c i ) ,  (13) 

to the computed spectra with KO, the Kolmogorov constant, equal to 2.45. Although 
experimental values for the Kolmogorov constant as high as 2.1 have been reported 
(Gibson, Stegen & Williams 1970), the fitted value is much higher than the usual 
experimental value of 1.4 to 1.7 (Monin t Yaglom 1975, pp. 483-485). Pao’s spectral 
form is used because it provides a means of comparing three-dimensional spectra from 
simulations with experimental one-dimensional spectra. For example, experimental 
spectra in Champagne et al. (1977) show a high-wavenumber bulge when compared 
with Pao’s form and there are similar differences between the calculated spectra of 
figure 1 and Pao’s form near (vk) - 0.2. Our simulation would be consistent with the 
experiments (that is KO - 1.7) if a higher Reynolds number simulation gave the 
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FIGURE 1. Kinetic-energy spectra normalized by the Kolmogorov microscales (10a) and multiplied 
by d: Pao’s theoretical curve (13) for KO = 2.45 is indicated by (---). 0, RA = 82.9; A, R, = 55.9; 
+, RA = 31.2; x , RA = 18.4. 

correct Kolmogorov constant in the inertial range. This conclusion is supported by 
analysis of the velocity -deri v ati ve skewness. 

For both the velocity and scalar three classes of the derivative skewnesses can be 
defined. These are the real-space derivative skewnesses, spectral-transfer skewnesses, 
and dissipation skewnesses. The real-space derivative skewnesses are measurable with 
hot-wire probes. The spectral and dissipation skewnesses are not strictly third-order 
moments, but in isotropic flow they are related to the real-space derivative skewnesses. 
The measurable real-space derivative skewnesses are the velocity-derivative 
skewness, 

which equals Fdua (3), the mixed-derivative skewness 
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FIQURE 2. Kinetic-energy and paasive-scalar spectra at R, = 82.9 normalized by the Kolmogorov 
microsceles (10a) and the scalar-variance dissipation, x. 0,  Pr = 0.1 ; A, Pr = 0.5; + , Pr = 1 .O; x , 
kinetic energy. 

and the scalar-derivative skewness 

In isotropic turbulence the terms in the velocity-derivative skewness and the 
mixed-derivative skewness can be written more generally. That is, 

(Betchov 1956) and 

~ ( ~ ( ~ ) ' )  2 ax, ax, = < e i e i , ~ , > .  

Furthermore, 
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and 

These rotationally invariant forms are used in all 
skewnesses. 

(19b)  

our calculations of the real-space 

The spectral-transfer skewnesses and the dissipation skewnesses are related to the 
real-space skewnesses through integral equations for the dissipation of energy and 

(20) 

scalar variance, 
E = jk2TU(k)dk-2u I k4E,(k)dE _ _  

2u dt 

and 
1 d  --x 2 0  dt = jk2TB(k)dk-Djk4EB(k)dk, 

where T,(k) and TB(k) are the nonlinear energy and scalar-variance transfers, 
respectively. For our forced equations another term should be added, but this term 
is negligible except at  low Reynolds numbers. The second-order moments of the 
transfers are related to the real-space skewnesses by 

Jk2Tu(k)dk = (wie,jwj) and jk2TB(k)dk  = -(eiei,ej>, 
identically. The integrals of the transfers are zero (j T(k) dk = 0), but because there 
is a net cascade of kinetic energy and scalar variance to higher wavenumbers, their 
second-order moments will in general be positive and non-zero. Therefore, we can 
define two spectral-transfer skewnesses, the velocity spectral skewness 

r 

and the mixed spectral skewness 
k2TB(k) dk  

where Pn is the rate of enstrophy production and Q, the enstrophy, equal to ? j ( q  wJ. 
Because the spectral-transfer skewnesses are non-zero, in isotropic flow the velocity- 
and mixed-derivative skewnesses will also be non-zero and obey 

8, = -Su(k) ,  sue = -s &k).  

These arguments do not apply to the real-space scalar-derivative skewness ( 16), which 
is zero in an isotropic calculation such as ours. However, i t  has recently been found 
that, in shear flows with a temperature gradient, the scalar-derivative skewness is 
non-zero (Sreenivasan & Tavoularis 1980). 

For our statistically steady forced simulations ds/dt+O and dX/dt+O, so we 
expect that, as the Reynolds numbers increase, 

Ik2Tu+2u I k 4 E u  and I I  k2TB+D k4E,. 

Therefore, a third measure of the skewnesses, the dissipation skewnesses, can be 
defined by (Wyngaard & Tennekes 1970 and Wyngaard 1971) 
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FIGUXE 3. Dependence of the velocity-derivative skewness (14) and mixed-derivative skewness (15) 
on Taylor-microscale Reynolds number: (---) is the experimental data of Klebanoff (private 
communication) where S, = 0.43; 0, Pr = 2.0; 0,  Pr = 1.0; A, Pr = 0.5; +, pr = 0.1; x ,  
velocity. 

[ k4E,(k) dk 
and 

where en = -- ds2 - - 2v 1 k4E(k)dk 
dt 

(25) 

is the enstrophy dissipation rate. 
As discussed in $1, all the higher-order correlations are expected to deviate from 

their uncorrelated values as the Reynolds number increases. Experimentally, the 
velocity-derivative skewness increases from zero, the uncorrelated value, to a value 
greater than 0.3 at very low experimental Reynolds numbers and appears to increase 
indefinitely in very high Reynolds-number atmospheric measurements (Tavoularis, 
Bennett & Corrsin 1978). But at intermediate Reynolds numbers the experiments are 
less conclusive. Tavoularis et al. (1978) cite data which suggests that the skewness 
decreases with Reynolds number between R, = 10 and 500. P. S. Klebanoff (National 
Bureau of Standards, private communication, 1982) h d s  the velocity-derivative 
skewness to be constant and equal to 0.43 between RA = 40 and 200 in a boundary 
layer. This experimental result is plotted in figure 3. 

Simulations discussed in Herring & Kerr (1982) show that the velocity-derivative 
skewness increases from 0 to 0.4 by RA - 20, in agreement with low-Reynolds-number 
experiments. They find that the mixed-derivative skewness increases in a similar 
manner. A t  intermediate Reynolds numbers, they suggest that both the velocity- and 
mixed-derivative skewnesses reach maximum values, then remain constant with 
increasing Reynolds number, agreeing with Klebanoff s experiment. With our fM3 and 
12@ simulations we have determined the skewnesses at higher Reynolds numbers and 
confirmed those results (figure 3). Figures 3 and 4 plot the real-space and dissipation 
skewnesses, respectively, as functions of R,, and in all cases the magnitudes of the 
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FIGURE 4. Dependence of the velocity-dissipation skewness (24) and the scalar-dissipation 
skewness (25) on Taylor-microscale Reynolds number. For symbols see figure 3. 

skewnesses converge to  approximately 0.5. The value for the velocity-derivative 
skewness for simulations F11 to  F27 is -0.505 k0.005. 

The statistical models of the small scales and the atmospheric measurements 
mentioned predict that  the velocity-derivative skewness will increase very slowly 
with Reynolds number (4,5). Although the accuracy of our curve is not good enough 
to rule out the existence of such a trend, i t  appears significant that both our 
simulation and some experiments show no Reynolds-number dependence over a wide 
range. The reason the velocity-derivative skewness does not increase with Reynolds 
number is probably related to the alignment of small-scale structures. Recall that  
the model of Tennekes (1968) suggested that if the structures are tubes, then the 
skewness would not increase with Reynolds number. In  $7 (Graphics) it will be seen 
that our structures are tubes. I n  addition, fourth-order statistics and our graphics 
find strong alignment between the vorticity and the rate of strain. 

Because of the connection between the velocity skewnesses and the fourth-order 
moment of the spectra, a simple relation between the velocity-derivative skewness 
and the Kolmogorov constant exists. If Pao's spectral form (13) is used with the 
equation for the velocity-dissipation skewness (24), 

S,  = -2.40K3. (27) 

For S,  = -0.5, KO = 2.85. For a typical experimental Kolmogorov constant, 
KO = 1.7, (27) gives S, = - 1.08, which disagrees with experimental measurements 
of the skewness at moderate Reynolds numbers. Therefore, the experimental 
skewness and our calculated spectra (figure 1 )  suggest that, in the wavenumber range 
calculated, the effective Kolmogorov constant islarge. Because the major contribution 
to the skewness comes from the wavenumber regime we have simulated, this could 
be consistent with a much lower Kolmogorov constant in the inertial range. It is 
consistent with the high-wavenumber bulge seen in the experimental spectra of 
Champagne et al. (1977). Additional experiments which determine both the Kolmo- 
gorov constant and the skewness would help answer these questions. 
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FICWRE 5. Dependence of the mixed-derivative skewness (15) on Prandtl number: Test field model 
results (---), the model of Hill (1978) (-), and experiments (@) are all taken from Leroheveque 
et al. (1980). Symbols for our simulations (-) are the same aa in figure 3. 

There are no experiments or phenomenological models with which to compare our 
results on the dependence of the mixed-derivative skewness with Reynolds numbers. 
But there are arguments that the mixed-derivative skewness should increase with 
Prandtl number, possibly with an upper bound at  a high Prandtl number for given 
Reynolds number (Hill 1978). Hill’s arguments assume that there are two spectral 
regimes for the scalar variance at low Prandtl numbers, a k 3  inertial regime and a 
k* inertialaiffusive regime. There are strong theoretical arguments in favour of both 
spectral regimes (Corrsin 1951 and Batchelor, Howells & Townsend 1959). Experi- 
mentally, a kS inertial range for the scalar variance has been well demonstrated 
(Monin & Yaglom 1975, p. 51 l),  but the evidence for a k-f  inertial-diffusive regime 
is tenuous. This is due in part to the exotic nature of low-Prandtl-number materials, 
such as liquid mercury and sodium. Experimental results on the dependence of the 
mixed-derivative skewness on Prandtl number are also difficult to obtain. With the 
exception of a few measurements in air (Pr = 0.7 in figure 4) the only measurements 
of the mixed-derivative skewness were taken in water and liquid mercury by Clay 
(1973). For air, measurements in the atmosphere (Antonia & Van Atta 1978) give 
much larger values than those in wind tunnels. Our results, Hill’s model 4, the test 
field model (Larcheveque et al. 1980), and several experimental values (taken from 
Larcheveque et al.) are shown in figure 5.  Our values are the maximum Sue for a 
given Prandtl number in our simulations (see figure 3). The experiments of Clay (1973) 
suggest that there is virtually no dependence on Prandtl number, which is compatible 
with our results. Figure 3 suggests that for higher Reynolds numbers Sue will 
asymptote to -0.5 for Pr = 0.1, but remain constant for Pr = 0.5 and 1.0. In  this 
case, simulations at higher Reynolds numbers should show that the mixed-derivative 
skewness is constant over a wide range of Prandtl numbers. A long crossover regime 
between the k-i and k-7 spectral ranges could explain this result. Gibson (1968) has 
suggested that this new regime should go as k-a, but the spectrum for Pr = 0.1 in 
figure 2 does not support this. 
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FIQURE 6. Dependence of the rotationally invariant fourth-order velocity-derivative correlations 
on Taylor-microscale Reynolds number: 0, Fl (32) or the velocity-derivative flatness; Fa,. (3); 0, 
F2 (33); A, Fa (34); +, F4 or the vorticity flatness, Fu. (38). 

5. Fourth- and higher-order velocity correlations 
Siggia (1981 b) has shown that in isotropic flow all fourth-order velocity-derivative 

correlations can be expressed in terms of four rotational invariants of the velocity- 
deformation tensor. These are 

Il = (e4>, I ,  = (w2e2>, (2819 (29) 

I3 = (wt etj ejk wk)  and I ,  = (w4), (3% (31) 

where 

ei5 = a[(a%/aq) + au,/aa1 
is the rate of strain, e2 = Zeg, e4 = (e2),, o2 = (V x u), is the vorticity, and wa = &,Z. 
We will normalize these correlations as follows : 

9 14 
- 5 (w">"' 

and F 1 3  

<u2) <e2> 
F3 = 3 

Their uncorrelated values are 3, 3, 1 and 3 respectively, and they are plotted in 
figure 6. The only fourth-order velocity-derivative correlation that has been experi- 
mentally determined is the velocity-derivative flatness, Fau* (3), which equals Fl if 
isotropy is assumed. We have normalized (32), (33), and (35) to 3 for comparison with 
Fa,4, whose Gaussian value is 3, and estimated scaling exponents for these correlations. 
Unlike the other fourth-order correlations, F3 (34) can be its uncorrelated value even 
without Gaussian statistics, and so it has been normalized to 1. 

with 
a4 = 0.25 for 12 < R, < 100. Our flatness ( F, or F,,o, figures 6 ,7  and 8) also increases 

Kuo & Corrsin (1971) find that F a u 4  increases with Reynolds number as 
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FIQURE 8. Dependence of the velocity-derivative flatness (3, 32) and the scalar-derivative flatness 
(39, 41) on Taylor-microscale Reynolds number. The experiment of Sreenivaaan et al. (1980) is a 
*. For the remaining symbols see figure 3. 

with Reynolds number and is in excellent agreement with the experiment of Frenkiel 
k Klebanoff (1975) (upper dotted line, figure 7), but a4 = 0.18k0.03. 

If only one scaling exponent is necessary to describe intermittency (as suggested 
by the phenomenological models), all the fourth-order velocity-derivative correlations 
should exhibit similar behaviour. If power laws are fitted to F,, F2, and F4 for R, 
greaterthan28, theexponentsare0.18~0.03,0.29~0.03and0.37 kO.03, respectively. 
This suggests that not one, but at least two scaling exponents are necessary, one for 
the rate of strain and the other for the vorticity. Furthermore, F3 decreases noticeably 

FIQURE 7. Dependence of the velocity-derivative correlations, Faun (3) on Taylor-microscale 
Reynolds number: 0, third order, or the velocity-derivative skewness, S, (14); 0, fourth order, 
the velocity-derivative flatneas or Fl (32); A, fifth order; + , sixth order, which has been divided 
by 5 so it will appear on this graph; (*--), experimental data of Klebanoff (private communication) 
for the velocity-derivative skewness and * the velocity-derivative flatness. 
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with Reynolds number at very low Reynolds number and rises only a small amount 
at higher Reynolds numbers. The low value for F3 suggests that  the principal 
component of the rate of strain and the vorticity tend t o  be perpendicular fo each 
other, which would always be the case in two dimensions, and implies that  there is 
strong alignment in the small-scale turbulent structures. This is demonstrated by the 
graphics discussed in $7.  The similarity between one of the isotropic forms of the 
skewness (17b) and I, suggests that the low value for F3 is related to the invariance 
of the velocity-derivative skewness. 

Although the computed fourth-order correlations suggest that several scaling 
exponents are necessary, i t  is possible that a t  much higher Reynolds numbers one 
scaling exponent is sufficient. If so, the self-similar regime described by the models 
has not been reached. The slight rise in F, might indicate that the calculations are 
approaching this regime. A change in the velocity-derivative flatness scaling exponent 
at higher Reynolds numbers would be seen as all the exponents approach the 
asymptotic value. This could be interpreted as a variation in the dissipation-dissip- 
ation correlation exponent ,u with Reynolds number. Experimentally, the Reynolds- 
number dependence of the velocity-derivative skewness and flatness is different at 
very high Reynolds number, with uq - 0.32 for R, = 200 to  20000 (Van Atta t 
Antonia 1980). There are two experimental measurements that  would help clarify this 
matter. If u, and u1 can be measured simultaneously, which now seems possible with 
crossed-wire probes, then 

and (37) 

could be measured. If the trends calculated are correct, I, should dominate in I s ,  and 
I, should dominate in I,. This implies that  the scaling exponent of the normalized 
correlation of I, should be greater than that of If>,p, and the scaling exponent of the 
normalized correlation of I, should be the largest. 

The fifth-eighth-order velocity-derivative correlations (3) and vorticity moments, 

have also been calculated. Since the statistics deteriorate as the order of the 
correlations increases (Kerr 1983), only the velocity-derivative skewness, flatness, 
and fifth- and sixth-order correlations are plotted in figure 7, even though the fifth- 
and sixth-order statistics are questionable. The exponents for the velocity-derivative 
correlations in figure 7 are 0.18 & 0.03, 0.27 f 0.03 and 0.55 f 0.03 respectively. The 
lognormal theory predicts that  these exponents should be proportional to n(n- 1 )  
(equation 4) and the B-model predicts n - 2  (equation 5). The lognormal theory 
provides a better fit, as in the experiments (Antonia et al. 1982). The associated value 
of the dissipation-dissipation correlation exponent ,u has not been calculated because 
the simulations are not in the Reynolds-number regime where the experimental value 
is usually found. 

Assuming isotropy, F,o = F,. The most important point that can be made about 
the sixth-order vorticity correlation (Fue, figure 9) is that its scaling exponent 
(1 .1  kO.1) is much larger than the corresponding sixth-order velocity-derivative 
scaling exponent, just as was true for the fourth-order correlations. 
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FIQURE 9. Dependence of the sixth-order velocity-derivative correlation, vorticity correlation, and 
scalar-derivative correlations on Taylor-microscale Reynolds number: 0, the velocity, Fa,. (3) ; 0, 
the vorticity, F,. (38); A, the scalar-derivative correlation, F,. (39), for Pr = 0.1 ; +, for Pr = 0.5; 
x ,  for Pr = 1.0. 

6. Scalar and mixed scalar-velocity fourth-order derivative correlations 
There are three fourth-order derivative correlations which have been measured 

experimentally, the velocity-derivative flatness, Fa,a (3), the scalar-derivative 
flatness 

and the mixed-derivative correlation 

The uncorrelated value for the velocity- and scalar-derivative flatnesses, assuming 
Gaussian statistics, is 3, and the uncorrelated value for the mixed-derivative 
correlation is 1. The rotationally invariant form of the scalar-derivative flatness in 
isotropic flow is 

In  the experiment of Antonia & Chambers (1980), the atmospheric temperature- 
derivative flatness increases much faster with Reynolds number than the velocity- 
derivative flatness. Specifically, if Fa@ - c, then ae = 0.5 for 100 < R, < 10000. In 
our simulations (figure 8), the scalar-derivative flatness also has a stronger dependence 
on Reynolds number than the velocity-derivative flatness. In addition, the scalar- 
derivative flatness increases with Prandtl number for given Reynolds number, while 
the scaling exponents decrease. For Prandtl numbers 0.1, 0.5, and 1.0 we found 
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Ci.0 = 0.48, 0.44 and 0.36. The trend for the flatness factors at  low Prandtl numbers 
to increase faster with Reynolds number than at  larger Prandtl numbers suggests 
that the large exponents for Pr = 0.1 and 0.5 might be transient, and that at higher 
Reynolds numbers they will have an exponent similiar to that for Pr = 1 .O. That is, 
Ci.8 = 0.36, which is the same order as the exponent for the vorticity flatness (F4),  might 
be an upper bound for the scaling exponent at large Reynolds numbers for all Prandtl 
numbers. 

Although the scalar-derivative flatness increases with R, a t  similar rates in 
experiment and in our simulations, the Reynolds numbers are very different. 
Sreenivasan et al. (1980) have measured the scalar-derivative flatness in a wind tunnel 
with temperature fluctuations produced by a heated screen and find Fa@ = 5.5. The 
Prandtl number is 0.7 and, we believe, R, x 24. (R, was computed from their u2 data 
and is consistent with similar wind-tunnel experiments by Warhaft & Lumley (1978).) 
For R, x 24, their result is consistent with our calculations and lies on our curve 
for Pr = 0.5 in figure 8. 

The sixth-order scalar-derivative correlations F w  are plotted in figure 9. The 
scaling exponents for Prandtl numbers 0.1, 0.5 and 1.0 are 1.48, 1.30 and 0.92 
respectively, showing the same trends with Prandtl number as the fourth-order 
correlations. 

Before discussing the one experimentally measurable mixed correlation we will 
consider some rotationally invariant correlations between the velocity and scalar 
derivatives where both are second order. These are 

They have been normalized so that their uncorrelated values are 1. Correlation Fveul 
is plotted in figure 10, and is nearly 1, showing that there is little correlation between 
the magnitudes of the vorticity and scalar derivative. Correlation Fvh2 is plotted in 
figure 11 and shows a strong anticorrelation between the direction of vorticity and 
the direction of the scalar gradient, which would be consistent with the scalar being 
wound around vortex tubes. Batchelor (1952) predicts this result for the stretching 
of a volume element of fluid. 

Both correlations between the strain rate and the scalar derivative are greater than 
one and show a tendency to increase with Reynolds number for R, < 30, then remain 
constant or increase slowly, much as the skewnesses do. The experimentally 
measurable mixed correlation is related to Fv0,, and Fveee by 

Fu, = 

and is plotted in figure 12. Correlation F,, has been measured by Park (1976) and 
is greater than one. 

We have calculated a wide assortment of other correlation factors, none of which 
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FIQTJRE 10. Dependence of the first scalar derivative/vorticity correlation, Fvhl (42), on 

Taylor-microscale.Reynolds number. For symbols see figure 3. 
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FIQURE 11. Dependence of the second scalar derivative/vorticity correlation, F,,,, (43), on 
Taylor-microacale Reynolds number. For symbols see figure 3. 

shows a significant divergence from their uncorrelated values. This is especially true 
for those with the scalar variance, such as 

For both our simulation and experiment (Sreenivasan et al. 1980) the scalar-variance 
flatness is 3, the Gaussian value. This is expected because, except for mixing, the 
scalar level is not affected by the dynamics although its derivatives are. 
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FIGURE 12. Dependence of the mixed scalarjvelocity derivative correlation, F,, (40), on 
Taylor-microscale Reynolds number. For symbols see figure 3. 

7. Graphics 
In Siggia (1981 a) three-dimensional perspective plots of the vorticity field indicated 

the presence of vortex tubes. We have produced similar graphics for the vorticity, 
the scalar gradient, and the compressive component of the rate of strain for a single 
time from run F19 in figures 13-19. Short lines are used to show the direction of the 
vector fields. In figures 13 (a, b) the length of each line is proportional to the magnitude 
of the vorticity and a line is plotted at a grid point only if the magnitude is above 
a threshold. In figure 13 (a) the threshold is picked such that only 0.25 %, or about 
500, of the grid points of a 643 mesh are plotted. The 0.25 yo value was picked so as 
to allow an assortment of structures to appear, but not so many that the pictures 
would be cluttered. A strong concentration of vorticity extends most of the way across 
our computational box. The vorticity in the gap indicated by the circle in figure 13 (a) 
is just below the threshold picked. In figure 13(b) the threshold is lowered such that 
1 % of the grid points are plotted and this gap is filled. The circled area in figure 13 (b) 
indicates where two tubes might be merging into one. By using a different threshold 
it is shown that the shape of the structures is not strongly dependent on the sample 
size. 

To show properly the correlations between the fields studied (the vorticity, rate 
of strain, and scalar gradient), requires colour graphics. In  figures 14-19 (plates 14)  
blue is used to represent the vorticity, yellow represents the scalar gradient, and red 
represents the compressive component of the rate of strain. The vorticity and scalar 
gradient are conditionally sampled by the same method as in figures 13(a, b). In 
figures 14 and 16, 1 yo of the vorticity points are plotted. In figures 14 and 18,0.25 yo 
of the scalar gradient points are plotted. The projection used for figures 14(a), 16(a), 
and 18 is the same as in figures 13(a,b). Figures 14(b) and 16(b) represent the same 
flow fields as figures l4(a) and 16(a), but rotated 90' about the vertical axis. This 
rotation shows that the major vortex structure noted in figures 13 (a, b) is a tube in 
both projections. 
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FIGURE 13. Three-dimensional perspective plots of the vorticity field from run F19 (R, = 48.5). 
Short lines, two mesh spacings long, in the direction of the vorticity are plotted a t  the points of 
a Ma mesh if the vorticity is above a threshold. (a) About 500 lines are plotted. A strong vortex 
structure extends most of the way across the box. The circle indicates where the vorticity of the 
structure is just below the threshold. From this perspective the vortex structure appears to be a 
tube. The arrow indicates where a two-dimensional slice is taken (figures 15, 17 and 19). (a) Same 
perspective as (a), but 2000 lines are plotted to show that the vortex structure does extend across 
the box. The circle indicates where two vortex structures might be merging into one. 
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The scalar gradient structures in figures 14(a, b) (plate 1)  appear to be sheets when 
rotated and the scalar gradient in the vicinity of the largest vortex tube is orthogonal 
to the vorticity, which is consistent with our calculation of FvOw2 (43). To visualize 
the correlation between vorticity and scalar gradient better, a two-dimensional slice 
of figures 14 (a, b) is plotted in figure 15 (plate 2). The location of the slice is indicated 
by the arrow in figure 13 (a). Two-dimensional vortex simulations which include scalar 
markers (Aref & Siggia 1980) and flow-visualization experiments (Winant & Browand 
1974; Brown & Roshko 1974) show the scalar marker winding around what are 
believed to be vortex cores. This winding, and the strong strain around the cores, 
should lead to strong scalar gradients perpendicular to the vorticity. In  figure 15 there 
are strong scalar gradients wrapped around and perpendicular to the vortex core. This 
suggests that the scalar in our simulations is also being wound around the vorticity. 

Figures 16 (plates 2 and 3) and 18 (plate 4) include the rate of strain. Since the 
rate of strain is a tensor, it cannot be described with a single line segment. However, 
by plotting only one of the principal rates of strain at a time, graphics can be produced 
that show the alignment of the strain field. Figures 16 and 18 conditionally sample, 
based on the trace of the square of the rate-of-strain tensor (e2), then plot the principal 
rate of strain with the largest absolute value; 0.5 yo of the grid points are used and 
in every case the largest principal rate of strain was negative, or compressive, with 
stretching in the two directions perpendicular to this component to maintain 
incompressibility. We might expect the largest principal rate of strain to be 
compressive because the velocity-derivative skewness (14) is negative. That is, by 
comparing the skewness with one of its isotropic forms (the trace of the rate of strain 
cubed, 17a)), we see that a negative skewness implies a negative value for the largest 
principal rate of strain. 

In figures 16 and 18 there are obvious structures in the rate-of-strain field, but it 
is not clear from rotation whether these are tubes or sheets. However, there is definite 
alignment with respect to the vorticity and scalar gradient which is consistent with 
the calculated statistics. First, because F, (33), the correlation between the magnitudes 
of the rate of strain and vorticity, is large, we expect the rate of strain to be 
concentrated near the vortex tubes. In figure 16(a) the largest strain structure is 
located near the strong vortex tube. Next, since there will, on the average, be vortex 
stretching along the tubes, any compressive components should be perpendicular 
to the tubes. In  figure 16(a) it appears that the compressive component of the rate 
of strain is aligned perpendicularly to the vortex tube. This is further illustrated by 
figure 17 (plate 3), which plots a two-dimensional slice of figures 16 (a, b). The slice 
is the same as in figure 15. Finally, how do the stretching, or expansive, components 
of the rate of strain align with the vorticity ? A linearized model due to Viellefosse 
(1982) shows the larger expansive component aligned perpendicular to  the vorticity, 
and the smaller expansive component aligned along the vorticity. Since one of the 
rotationally invariant forms of the skewness (1  7 b )  is related to vortex stretching, and 
both the skewness and F3 are small, our statistics also suggest that the smaller 
expansive principal rate of strain is aligned with the vorticity. Unfortunately, we have 
no graphics that show the expansive components of the rate of strain clearly. 

How should the scalar gradient be aligned with respect to the rate of strain ? First, 
the scalar-gradient sheets and rate-of-strain structures should be located near one 
another because the fourth-order correlations between the rate of strain and scalar 
gradient (44,45) are greater than one. Secondly, the scalar gradient should be aligned 
along the compressive component of the rate of strain because the mixed-derivative 
skewness is negative. That is, just as we predicted that the largest component of the 
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rate of strain is compressive by comparing the velocity-derivative skewness with one 
of its isotropic forms, by comparing the mixed-derivative skewness with its isotropic 
form (18) we predict that the compressive component of the rate of strain is aligned 
with the scalar gradient. Comparisons between the scalar gradient and compressive 
component of the rate of strain in figures 18 and 19 (plate 4) show that both of these 
predictions are borne out. 

8. Discussion 
We have studied the derivative correlations of an idealized turbulent flow because 

they are a quantitative means of probing the small scales of that flow. Numerically, 
the derivative correlations helped establish the resolution of our simulations. Once 
the resolution was established, they were compared with experiments and pheno- 
menological models and were used in the interpretation of three-dimensional 
graphics. Because the small scales of turbulence are believed to be decoupled from 
the large scales, what is learned about the small scales in this idealized flow should be 
applicable to turbulent flows in general. 

The most important result for the velocity-derivative correlations is that they do 
not obey the scaling laws predicted by statistical models of intermittency, such as 
the lognormal model and the /3-model. These models predict that the skewness will 
depend on Reynolds number and that all the fourth-order velocity-derivative 
correlations will have the same Reynolds-number dependence. In  the simulations the 
skewness does not depend on the Reynolds number and each of the rotationally 
invariant fourth-order correlations has a different exponent. It is possible that at very 
high Reynolds numbers the velocity-derivative correlations do behave as these 
models predict. High-Reynolds-number experiments cited by Tavoularis et al. ( 1978) 
show the skewness increasing and Van Atta & Antonia (1980) find a different power 
law for the velocity-derivative flatness at higher Reynolds numbers. Alternatively, 
models that include the structure of the small scales, such as the model of Tennekes 
(1968), might be necessary. A simple experiment which might resolve this issue is to 
find the exponents of more of the fourth-order correlations. 

The most important result for the derivative correlations of a passive scalar is that 
the scalar-derivative flatness is larger than the velocity-derivative flatness. This 
suggests that the scalar derivative is more intermittent than the velocity derivative 
and might be related to several other anomalous scalar effects seen experimentally, 
for example the ‘bump’ in the scalar spectrum described by Hill (1978) and sharp 
gradients, or interfaces, called ‘ramps’ (Antonia et al. 1979). What allows sharp 
structures to form in the scalar field, but not the velocity field ? First, they do appear 
in the velocity field, but as vorticity, which cannot be measured directly, and not 
as simple velocity gradients, which are easy to measure. These struct,ures are much 
more likely to be observed in the au,/az, field than in au,/az,, if our conclusions about 
the relative strengths of I5 and I,, (36, 37) are correct. 

Graphical display has been used to demonstrate the alignment indicated by the 
statistics. This shows that the vorticity is concentrated in tubes, not sheets, with large 
concentrations of the rate of strain and scalar gradient nearby. The statistics and 
graphics show that the largest principal rate of strain is compressive and aligned 
perpendicular to the tube. The larger stretching, or expansive, component of the rate 
of strain also appears to be perpendicular to the vortex tubes, while the stretching 
along the tubes is small and is probably not caused by the immediate vortex tube. 
This structure and the statistics are consistent with the linearized model of Viellefosse 



56 R. M .  Kerr 

(1982) and the structure model of Tennekes (1968), who predicted that the velocity- 
derivative skewness is independent of Reynolds number. Graphical display also shows 
that large values of the scalar gradient are wrapped in sheets around the tube and 
that the gradient is aligned perpendicular to the vorticity and along the compressive 
component of the rate of strain. This is consistent with correlations between the scalar 
gradient and both the rate of strain and the vorticity. 

Although flow visualization has shown the existence of extended ‘ coherent’ 
structures on the large scales, most theoretical models of the small scales of turbulence 
have neglected alignment. They assume that small-scale structures in fully developed 
turbulence are distributed with random orientation and that statistical mechanics 
is applicable. Our results suggest that turbulence is characterized by extended vortex 
tubes and strong alignment between the vorticity and rate of strain. It is possible 
that as the Reynolds number increases these tubes become more tightly wound and 
the alignment becomes stronger. There would still be statistics, but the statistics 
would have to include structures. Strong alignment is not inconsistent with the best- 
known characteristic of turbulence, the k-8 spectrum. Lundgren (1982) has shown how 
fluctuations about a Burger’s vortex can give a k-t spectrum. Our highest Reynolds 
number simulation also shows a short -% regime. Even if the correlations behave as 
the statistical phenomenological models predict a t  higher Reynolds numbers, there 
should still be a tendency for the vorticity to form tubes and for there to be alignment 
between the vorticity and rate of strain. The vortex tubes might show more random 
orientation than in our current graphics, but there would still be strong alignment 
at the smallest scales. 
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FIGURE 14. Three-dimensional perspective plots of the vorticity (blue) and scalar-gradient (yellow) 
fields. Short lines in the direction of the scalar gradient are plotted at the points of a 643 mesh if 
the scalar gradient is above a threshold. 500 lines are plotted for the scalar gradient. 2000 lines 
are plotted for the vorticity. (a) The same perspective as in figures 13(a, b). The scalar-gradient 
structure in the top centre is aligned along with the vortex structure with the scalar gradient 
perpendicular to the vorticity. This scalar-gradient structure is a sheet seen edge on. Two scalar 
structures in the upper-left corner are sheets seen from the top down. (b) The same field as (a), but 
rotated 90" about the vertical axis. In the middle the vortex structure continues to look like a tube. 
In the upper right it appears more twisted. The scalar-gradient structure in (a) which is aligned 
with the vorticity is the fanlike structure in the upper centre. The scalar-gradient structures to 
the right and above the fanlike structure are the sheets in the upper-left corner in (a), but now 
seen edge on. 
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FIGURE 15. Two-dimensional slice of figures 14(a, b )  as indicated by the arrow in figure 13(a). The 
vortex structure in the centre might be associated with vortex merging. The scalar-gradient 
structure in the centre is ,partially wrapped around the vortex structure and shows the scalar 
gradient aligned perpendicular to the vorticity. 

FIGURE 16. For legend see opposite. 
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FIGURE 16. Three-dimensional perspective plots of the vorticity (blue) and compressive component 
of the rate-of-strain (red) fields. Short lines in the direction of the compressive component are 
plotted at the points of a 648 mesh if the total rate of strain is above a threshold. loo0 lines are 
plotted for the rate of strain. ZOO0 lines are plotted for the vorticity. (a) The same perspective aa 
in figures 13 (a) and 14(a). The rate-of-strain structure in the top centre is aligned along the vortex 
structure with the compressive component of the rate of strain perpendicular to the vorticity. 
(b) The same field aa (a), but rotated 90" about the vertical axis. It has the same perspective as 
figure l4(b). The rate-of-strain in (a) which is aligned with the vorticity is the fanlike structure 
in the upper centre. 

FIQURE 17. Two-dimensional slice of figures 16(a, b) indicated by the arrow in figure 13(a). The 
structures in the centre show the compressive component of the rate of strain aligned perpendicular 
to the vorticity. 
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FIGURE 18. Three-dimensional perspective plots of the compressive component of the rate.-of-strain 
(red) and scalar-gradient (yellow) fields. lo00 lines are plotted for the rate of strain. 500 lines are 
plotted for the scalar gradient. The perspective is the same aa in figures 13(a) and 14(a). The 
rate-of-strain structure in the top centre is aligned along the scalar-gradient structure with the 
compressive component of the rate of strain parallel to the scalar gradient. 

FIGURE 19. Two-dimensional slice of figure 18 indicated by the arrow in figure 13 (a). The structures 
in the centre show the compreesive component of the rate of strain aligned parallel to the scalar 
gradient. 
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